統計検定 1級 2018年 統計数理 問1 解答 解説

スポンサーリンク

[1]

\(E[S^2]\)\(=\displaystyle E\left[\frac{1}{n-1}\sum^n_{i=1}(X_i-\bar{X})^2\right]\)

\(\displaystyle =\frac{1}{n-1}E\left[\sum^n_{i=1}(X_i-\bar{X})^2\right]\)

\(\displaystyle =\frac{1}{n-1}E\left[\sum^n_{i=1}\{(X_i-\mu) -(\bar{X}-\mu)\}^2\right]\)

\(\displaystyle =\frac{1}{n-1}\left(E\left[\sum^n_{i=1}(X_i-\mu)^2\right]\right.\)\(\displaystyle -2E\left[\sum^n_{i=1}(X_i-\mu)(\bar{X}-\mu)\right]\)\(\displaystyle \left. +E\left[\sum^n_{i=1}(\bar{X}-\mu)^2\right]\right)\)

括弧内の1項目は、

\(\displaystyle E\left[\sum^n_{i=1}(X_i-\mu)^2\right]\)

\(\displaystyle =\sum^n_{i=1}E\left[(X_i-\mu)^2\right]\)

\(\displaystyle =\sum^n_{i=1}\sigma^2\)

\(\displaystyle =n\sigma^2\)

2項目は、

\(\displaystyle E\left[\sum^n_{i=1}(X_i-\mu)(\bar{X}-\mu)\right]\)

\(\displaystyle =E\left[n(\bar{x}-\mu)(\bar{X}-\mu)\right]\)

\(\displaystyle =nE\left[(\bar{x}-\mu)^2\right]\)

\(\displaystyle =n\frac{\sigma^2}{n}\)

\(=\sigma^2\)

3項目は、

\(\displaystyle E\left[\sum^n_{i=1}(\bar{X}-\mu)^2\right]\)

\(\displaystyle =\sum^n_{i=1}E\left[(\bar{X}-\mu)^2\right]\)

\(\displaystyle =\sum^n_{i=1}\frac{\sigma^2}{n}\)

\(=\sigma^2\)

よって、

\(E[S^2]=\sigma^2\)

[2]

\(E[Y]=\displaystyle \int^\infty_0 yg(y)dy\)

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 y^{\frac{n-1}{2}}e^{-\frac{y}{2}}dy\)

\(\displaystyle \frac{y}{2}=t\)と変数変換すると、

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 (2t)^{\frac{n-1}{2}}e^{-t}2dt\)

\(\displaystyle =\frac{2}{\Gamma \left(\frac{n-1}{2}\right)}\Gamma \left(\frac{n-1}{2}+1\right)\)

\(\displaystyle =\frac{2}{\Gamma \left(\frac{n-1}{2}\right)}\frac{n-1}{2}\Gamma \left(\frac{n-1}{2}\right)\)

\(=n-1\)

\(E[Y^2]=\displaystyle \int^\infty_0 y^2g(y)dy\)

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 y^{\frac{n-1}{2}+1}e^{-\frac{y}{2}}dy\)

\(\displaystyle \frac{y}{2}=t\)と変数変換すると、

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 (2t)^{\frac{n-1}{2}+1}e^{-t}2dt\)

\(\displaystyle =\frac{2^2}{\Gamma \left(\frac{n-1}{2}\right)}\Gamma \left(\frac{n-1}{2}+2\right)\)

\(\displaystyle =\frac{2^2}{\Gamma \left(\frac{n-1}{2}\right)}\left(\frac{n-1}{2}+1\right)\)\(\displaystyle \frac{n-1}{2}\Gamma \left(\frac{n-1}{2}\right)\)

\(=(n+1)(n-1)\)

よって、

\(V[Y]=E[Y^2]-E[Y]^2\)\(=2(n-1)\)

[3]

\(E[\sqrt{Y}]=\displaystyle \int^\infty_0 \sqrt{y}g(y)dy\)

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 y^{\frac{n}{2}-1}e^{-\frac{y}{2}}dy\)

\(\displaystyle \frac{y}{2}=t\)と変数変換すると、

\(\displaystyle =\frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma \left(\frac{n-1}{2}\right)}\int^\infty_0 (2t)^{\frac{n}{2}-1}e^{-t}2dt\)

\(\displaystyle =\frac{\sqrt{2}\Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n-1}{2}\right)}\)

\(\displaystyle \frac{(n-1)S^2}{\sigma^2}=\sum^n_{i=1}\left(\frac{X_i-\bar{X}}{\sigma}\right)^2\)は、\(\chi^2(n-1)\)に従うので、\(Y=\displaystyle \frac{(n-1)S^2}{\sigma^2}\)すなわち、\(S=\displaystyle \frac{\sigma}{\sqrt{n-1}}\sqrt{Y}\)で、

\(E[S]=\displaystyle \frac{\sigma}{\sqrt{n-1}}E[\sqrt{Y}]\)

\(\displaystyle =\sigma \sqrt{\frac{2}{n-1}}\frac{\Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n-1}{2}\right)}\)

[4]

スターリングの公式を用いると、

\(\displaystyle E[S]=\sigma \sqrt{\frac{2}{n-1}}\frac{\Gamma \left(\frac{n}{2}\right)}{\Gamma \left(\frac{n-1}{2}\right)}\)

\(\displaystyle = \sigma \sqrt{\frac{2}{n-1}}\frac{\sqrt{2 \pi} e^{-\frac{n}{2}}\left(\frac{n}{2}\right)^{\frac{n-1}{2}}}{\sqrt{2 \pi} e^{-\frac{n-1}{2}}\left(\frac{n-1}{2}\right)^{\frac{n-2}{2}}}\)

\(\displaystyle =\sigma e^{-\frac{1}{2}}\left(\frac{n}{n-1}\right)^{\frac{n-1}{2}}\)

\(\displaystyle f(n)=\left(\frac{n}{n-1}\right)^{\frac{n-1}{2}}\)

とすると、

\(f(\infty)=\displaystyle \lim_{n\to \infty}\left(\frac{n}{n-1}\right)^{\frac{n-1}{2}}\)

\(=\displaystyle \lim_{n\to \infty}\left(\left(1+\frac{1}{n-1}\right)^{n-1}\right)^{\frac{1}{2}}\)

\(\displaystyle =e^{\frac{1}{2}}\)

\(f(n)\)に対して、\(t=\displaystyle \frac{1}{n}\)で変数変換をしてマクローリン展開をする。

\(\displaystyle f(n)=\left(\frac{1}{1-t}\right)^{\frac{1-t}{2t}}\)\(\equiv h(t)\)とすると、

\(h(0)\)\(=f(\infty)\)\(=\displaystyle e^{\frac{1}{2}}\)

\(\displaystyle \ln h(t)=\frac{1-t}{2t}\ln \frac{1}{1-t}\)

\(\displaystyle 2\ln h(t)=\left(1-\frac{1}{t}\right)\ln (1-t)\)

両辺を\(t\)で微分して、

\(\displaystyle 2\frac{h'(t)}{h(t)}=\frac{t+\ln (1-t)}{t^2}\)

\(t \to 0\)の時に不定形なので、ロピタルの定理を利用して、

\(\displaystyle \lim_{t \to 0}\frac{t+\ln (1-t)}{t^2}\)\(\displaystyle =\lim_{t \to 0}\frac{1-\frac{1}{1-t}}{2t}\)

\(\displaystyle =\lim_{t \to 0 }-\frac{1}{2(1-t)}\)

\(=\displaystyle -\frac{1}{2}\)

よって、

\(\displaystyle \lim_{t \to 0}h'(t)=-\frac{e^{\frac{1}{2}}}{4}\)

以上より1次までのマクローリン展開は、

\(\displaystyle h(t)\approx e^{\frac{1}{2}}-\frac{e^{\frac{1}{2}}}{4}t\)

\(n\)に戻して、

\(\displaystyle f(n)\approx e^{\frac{1}{2}}-\frac{e^{\frac{1}{2}}}{4}\frac{1}{n}\)

よって、

\(\displaystyle E[S] \approx \sigma -\frac{\sigma}{4n}\)

なので、

\(\displaystyle E[S]-\sigma \approx -\frac{\sigma}{4n}\)


コメント

タイトルとURLをコピーしました