統計検定 1級 2017年 統計数理 問1 解答 解説

スポンサーリンク

[1]

公式の解答を参照。

[2]

\(E[(\bar{X}-\mu)^3]\)

\(\displaystyle =E\left[\left(\frac{1}{n}\sum_{i=1}^nX_i-\mu\right)^3\right]\)

\(\displaystyle =\frac{1}{n^3}E\left[\left(\sum_{i=1}^nX_i-n\mu\right)^3\right]\)

\(\displaystyle =\frac{1}{n^3}E\left[\left(\sum_{i=1}^n(X_i-\mu)\right)^3\right]\)

\(\displaystyle =\frac{1}{n^3}\left(E\left[\sum_{i=1}^n(X_i-\mu)^3\right]\right.\)\(\displaystyle +E\left[{}_3C_1\sum_{i\neq j}^n(X_i-\mu)^2(X_j-\mu)\right]\)\(\displaystyle +\left.E\left[3!\sum_{i<j<k}^n(X_i-\mu)(X_j-\mu)(X_k-\mu)\right]\right)\)

\(\displaystyle =\frac{1}{n^3}E\left[\sum_{i=1}^n(X_i-\mu)^3\right]\)

\(\displaystyle =\frac{1}{n^2}E\left[(X_i-\mu)^3\right]\)

\(\displaystyle =\frac{1}{n^2}\sigma^3\beta_1\)

よって、\(\bar{X}\)の歪度は、分散の3/2乗で割って、

\(\displaystyle \frac{\frac{1}{n^2}\sigma^3\beta_1}{\left(\frac{\sigma^2}{n}\right)^\frac{3}{2}}\)\(\displaystyle =\frac{\beta_1}{\sqrt{n}}\)

[3]

\(E[(\bar{X}-\mu)^4]\)

\(\displaystyle =E\left[\left(\frac{1}{n}\sum_{i=1}^nX_i-\mu\right)^4\right]\)

\(\displaystyle =\frac{1}{n^4}E\left[\left(\sum_{i=1}^nX_i-n\mu\right)^4\right]\)

\(\displaystyle =\frac{1}{n^4}E\left[\left(\sum_{i=1}^n(X_i-\mu)\right)^4\right]\)

\(\displaystyle =\frac{1}{n^4}\left(E\left[\sum_{i=1}^n(X_i-\mu)^4\right]\right.\)\(\displaystyle +E\left[{}_4C_1\sum_{i \neq j}^n(X_i-\mu)^3(X_j-\mu)\right]\)\(\displaystyle +E\left[{}_4C_2\sum_{i < j}^n(X_i-\mu)^2(X_j-\mu)^2\right]\)\(\displaystyle +\left.E\left[\frac{4!}{2!}\sum_{i \neq j \neq k}^n(X_i-\mu)^2(X_j-\mu)(X_k-\mu)\right]\right)\)

\(\displaystyle =\frac{1}{n^4}\left(E\left[\sum_{i=1}^n(X_i-\mu)^4\right]\right.\)\(\displaystyle +\left.E\left[{}_4C_2\sum_{i < j}^n(X_i-\mu)^2(X_j-\mu)^2\right]\right)\)

\(\displaystyle =\frac{1}{n^4}(nE[(X_i-\mu)^4]\)\(\displaystyle +3n(n-1)E[(X_i-\mu)^2]\)\(E[(X_j-\mu)^2])\)

\(\displaystyle =\frac{1}{n^4}(n\sigma^4(\beta_2+3)\)\(\displaystyle +3n(n-1)\sigma^2\)\(\cdot \sigma^2)\)

\(\displaystyle =\frac{\sigma^4(\beta_2+3n)}{n^3}\)

よって、\(\bar{X}\)の歪度は、分散の2乗で割って3を引いて

\(\displaystyle \frac{\frac{\sigma^4(\beta_2+3n)}{n^3}}{\left(\frac{\sigma^2}{n}\right)^2}-3\)\(\displaystyle =\frac{\beta_2}{n}\)

[4]

\(n \to \infty\)として、歪度も尖度も0に近づく。

[5]

\(f(\boldsymbol{x})=\displaystyle \prod_{i=1}^n f(x_i)\)

\(\displaystyle =(2\pi\sigma^2)^{-\frac{n}{2}}\exp\left[-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\sigma^2}\right]\)

\(l=\ln f(\boldsymbol{x})\)

\(\displaystyle =-\frac{n}{2}\ln(2\pi\sigma^2)-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\sigma^2}\)

\(\mu\)既知の時、

\(\displaystyle \frac{dl}{d\sigma^2}\)\(\displaystyle =-\frac{n}{2\sigma^2}+\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\sigma^4}\)\(=0\)

として、\(\sigma^2=T\)となる。

\(\mu\)未知の時、

\(\displaystyle \frac{\partial l}{\partial \mu}\)\(\displaystyle =\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\)\(=0\)

として、\(\mu=\bar{X}\)

\(\displaystyle \frac{dl}{d\sigma^2}=0\)によって得られた\(\sigma^2\)の\(\mu\)に\(\bar{X}\)を代入して、

\(\displaystyle \sigma^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\)

\(\displaystyle =\frac{n-1}{n}S^2\)


コメント

タイトルとURLをコピーしました