統計検定 1級 2015年 統計応用(理工学) 問1 解答 解説

スポンサーリンク

[1]

\(Pr\{X=k\}=\)「白玉を\(k-1\)回引いた後、赤玉を\(1\)回引く確率」

\(=\displaystyle \frac{1}{2}\cdot\frac{2}{3}\cdot \cdots \cdot \frac{k-1}{k}\cdot \frac{1}{k+1}\)

\(=\displaystyle \frac{1}{k(k+1)}\)

[2]

\(f(k) \geq 0\)かつ

\(\displaystyle \sum_{k=1}^\infty f(k) = \sum_{k=1}^\infty \frac{1}{k(k+1)}\)

\(\displaystyle = \sum_{k=1}^\infty \left( \frac{1}{k} -\frac{1}{k+1}\right)\)\(=1\)

より、\(f(k)\)は確率関数。

[3]

\(E[X] =\displaystyle \sum_{k=1}^\infty kf(k) \)

\(=\displaystyle \sum_{k=1}^\infty \frac{1}{k+1} \)

\(=\displaystyle \frac{1}{2}+\frac{1}{3}+\cdots \)

\(\displaystyle > \int ^\infty_2 \frac{1}{x}dx\) (区分求積法の利用)

\(=\displaystyle [\ln x]^\infty_2 =\infty \)

よって平均値は存在せず、分散も存在しない。

[4]

\(P(k) \geq 0\)かつ

\(\displaystyle \sum_{k=1}^\infty P(k) = \sum_{k=1}^\infty \frac{18}{k(k+1)(k+2)(k+3)}\)

\(\displaystyle = 6\sum_{k=1}^\infty \left( \frac{1}{k(k+1)(k+2)} -\frac{1}{(k+1)(k+2)(k+3)}\right)\)\(=1\)

より、\(P(k)\)は確率関数。

[5]

\(E[Y]= \displaystyle\sum_{k=1}^\infty kP(k)\)

\(= \displaystyle\sum_{k=1}^\infty \frac{18}{(k+1)(k+2)(k+3)}\)

\(\displaystyle = 9\sum_{k=1}^\infty \left( \frac{1}{(k+1)(k+2)} -\frac{1}{(k+2)(k+3)}\right)\)

\(\displaystyle = \frac{3}{2}\)

[6]

\(E[Y(Y+1)]\)

\(E[Y(Y+1)]= \displaystyle\sum_{k=1}^\infty k(k+1)P(k)\)

\(= \displaystyle\sum_{k=1}^\infty \frac{18}{(k+2)(k+3)}\)

\(\displaystyle = 18\sum_{k=1}^\infty \left( \frac{1}{k+2} -\frac{1}{k+3}\right)\)

\(\displaystyle = 6\)

\(V[Y]\)

\(V[Y]=E[Y(Y+1)]-E[Y]-E[Y]^2\)

\(\displaystyle = 6-\frac{3}{2}-\left(\frac{3}{2}\right)^2\)

\(\displaystyle = \frac{9}{4}\)


コメント

タイトルとURLをコピーしました